Dirac Induction for Loop Groups

نویسنده

  • HESSEL POSTHUMA
چکیده

Using a coset version of the cubic Dirac operators for affine Lie algebras, we give an algebraic construction of the Dirac induction homomorphism for loop group representations. With this we prove a homogeneous generalization of the Weyl–Kac character formula and show compatibility with Dirac induction for compact Lie groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Monopole Searches

“At the present time (1975) there is no experimental evidence for the existence of magnetic charges or monopoles, but chiefly because of an early, brilliant theoretical argument by Dirac, the search for monopoles is renewed whenever a new energy region is opened up in high energy physics or a new source of matter, such as rocks from the moon, becomes available [1]. ” Dirac argued that a monopol...

متن کامل

– 1 – Magnetic Monopole Searches

“At the present time (1975) there is no experimental evidence for the existence of magnetic charges or monopoles, but chiefly because of an early, brilliant theoretical argument by Dirac, the search for monopoles is renewed whenever a new energy region is opened up in high energy physics or a new source of matter, such as rocks from the moon, becomes available [1].” Dirac argued that a monopole...

متن کامل

Loop operators and S-duality from curves on Riemann surfaces

We study Wilson-’t Hooft loop operators in a class of N = 2 superconformal field theories recently introduced by Gaiotto. In the case that the gauge group is a product of SU(2) groups, we classify all possible loop operators in terms of their electric and magnetic charges subject to the Dirac quantization condition. We then show that this precisely matches Dehn’s classification of homotopy clas...

متن کامل

ar X iv : h ep - t h / 04 11 01 6 v 2 2 5 Fe b 20 08 Symmetries and supersymmetries of the Dirac operators in curved spacetimes ∗

It is shown that the main geometrical objects involved in all the symmetries or supersymmetries of the Dirac operators in curved manifolds of arbitrary dimensions are the Killing vectors and the Killing-Yano tensors of any ranks. The general theory of external symmetry transformations associated to the usual isometries is presented, pointing out that these leave the standard Dirac equation inva...

متن کامل

Dolbeault Cohomology of a Loop Space

Loop spaces LM of compact complex manifolds M promise to have rich analytic cohomology theories, and it is expected that sheaf and Dolbeault cohomology groups of LM will shed new light on the complex geometry and analysis of M itself. This idea first occurs in [W], in the context of the infinite dimensional Dirac operator, and then in [HBJ] that touches upon Dolbeault groups of loop spaces; but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010